\(\int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx\) [40]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 90 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=-\frac {(A-B) x}{a}+\frac {B x}{2 a}+\frac {(A-B) \sin (c+d x)}{a d}+\frac {B \cos (c+d x) \sin (c+d x)}{2 a d}+\frac {(A-B) \sin (c+d x)}{a d (1+\cos (c+d x))} \]

[Out]

-(A-B)*x/a+1/2*B*x/a+(A-B)*sin(d*x+c)/a/d+1/2*B*cos(d*x+c)*sin(d*x+c)/a/d+(A-B)*sin(d*x+c)/a/d/(1+cos(d*x+c))

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.10, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {3056, 2813} \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {2 (A-B) \sin (c+d x)}{a d}+\frac {(A-B) \sin (c+d x) \cos ^2(c+d x)}{d (a \cos (c+d x)+a)}-\frac {(2 A-3 B) \sin (c+d x) \cos (c+d x)}{2 a d}-\frac {x (2 A-3 B)}{2 a} \]

[In]

Int[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x]

[Out]

-1/2*((2*A - 3*B)*x)/a + (2*(A - B)*Sin[c + d*x])/(a*d) - ((2*A - 3*B)*Cos[c + d*x]*Sin[c + d*x])/(2*a*d) + ((
A - B)*Cos[c + d*x]^2*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2813

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*a*c +
 b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Cos[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {(A-B) \cos ^2(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int \cos (c+d x) (2 a (A-B)-a (2 A-3 B) \cos (c+d x)) \, dx}{a^2} \\ & = -\frac {(2 A-3 B) x}{2 a}+\frac {2 (A-B) \sin (c+d x)}{a d}-\frac {(2 A-3 B) \cos (c+d x) \sin (c+d x)}{2 a d}+\frac {(A-B) \cos ^2(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(197\) vs. \(2(90)=180\).

Time = 1.03 (sec) , antiderivative size = 197, normalized size of antiderivative = 2.19 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (-4 (2 A-3 B) d x \cos \left (\frac {d x}{2}\right )-4 (2 A-3 B) d x \cos \left (c+\frac {d x}{2}\right )+20 A \sin \left (\frac {d x}{2}\right )-20 B \sin \left (\frac {d x}{2}\right )+4 A \sin \left (c+\frac {d x}{2}\right )-4 B \sin \left (c+\frac {d x}{2}\right )+4 A \sin \left (c+\frac {3 d x}{2}\right )-3 B \sin \left (c+\frac {3 d x}{2}\right )+4 A \sin \left (2 c+\frac {3 d x}{2}\right )-3 B \sin \left (2 c+\frac {3 d x}{2}\right )+B \sin \left (2 c+\frac {5 d x}{2}\right )+B \sin \left (3 c+\frac {5 d x}{2}\right )\right )}{8 a d (1+\cos (c+d x))} \]

[In]

Integrate[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(-4*(2*A - 3*B)*d*x*Cos[(d*x)/2] - 4*(2*A - 3*B)*d*x*Cos[c + (d*x)/2] + 20*A*Sin[(d
*x)/2] - 20*B*Sin[(d*x)/2] + 4*A*Sin[c + (d*x)/2] - 4*B*Sin[c + (d*x)/2] + 4*A*Sin[c + (3*d*x)/2] - 3*B*Sin[c
+ (3*d*x)/2] + 4*A*Sin[2*c + (3*d*x)/2] - 3*B*Sin[2*c + (3*d*x)/2] + B*Sin[2*c + (5*d*x)/2] + B*Sin[3*c + (5*d
*x)/2]))/(8*a*d*(1 + Cos[c + d*x]))

Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.68

method result size
parallelrisch \(\frac {\left (B \cos \left (2 d x +2 c \right )+\left (4 A -2 B \right ) \cos \left (d x +c \right )+8 A -7 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-4 x \left (-\frac {3 B}{2}+A \right ) d}{4 a d}\) \(61\)
derivativedivides \(\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {2 \left (\left (\frac {3 B}{2}-A \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +\frac {B}{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\left (2 A -3 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}\) \(105\)
default \(\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {2 \left (\left (\frac {3 B}{2}-A \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +\frac {B}{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\left (2 A -3 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}\) \(105\)
risch \(-\frac {x A}{a}+\frac {3 B x}{2 a}-\frac {i {\mathrm e}^{i \left (d x +c \right )} A}{2 a d}+\frac {i {\mathrm e}^{i \left (d x +c \right )} B}{2 a d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} A}{2 a d}-\frac {i {\mathrm e}^{-i \left (d x +c \right )} B}{2 a d}+\frac {2 i A}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}-\frac {2 i B}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}+\frac {\sin \left (2 d x +2 c \right ) B}{4 a d}\) \(156\)
norman \(\frac {\frac {\left (A -B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}+\frac {\left (3 A -2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d}+\frac {\left (5 A -6 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {\left (2 A -3 B \right ) x}{2 a}+\frac {7 \left (A -B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {3 \left (2 A -3 B \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {3 \left (2 A -3 B \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {\left (2 A -3 B \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}\) \(198\)

[In]

int(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)

[Out]

1/4*((B*cos(2*d*x+2*c)+(4*A-2*B)*cos(d*x+c)+8*A-7*B)*tan(1/2*d*x+1/2*c)-4*x*(-3/2*B+A)*d)/a/d

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.92 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=-\frac {{\left (2 \, A - 3 \, B\right )} d x \cos \left (d x + c\right ) + {\left (2 \, A - 3 \, B\right )} d x - {\left (B \cos \left (d x + c\right )^{2} + {\left (2 \, A - B\right )} \cos \left (d x + c\right ) + 4 \, A - 4 \, B\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*((2*A - 3*B)*d*x*cos(d*x + c) + (2*A - 3*B)*d*x - (B*cos(d*x + c)^2 + (2*A - B)*cos(d*x + c) + 4*A - 4*B)
*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 665 vs. \(2 (68) = 136\).

Time = 0.87 (sec) , antiderivative size = 665, normalized size of antiderivative = 7.39 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\begin {cases} - \frac {2 A d x \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} - \frac {4 A d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} - \frac {2 A d x}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {2 A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {8 A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {6 A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {3 B d x \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {6 B d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} + \frac {3 B d x}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} - \frac {2 B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} - \frac {10 B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} - \frac {4 B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{2 a d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 4 a d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 2 a d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\left (c \right )}\right ) \cos ^{2}{\left (c \right )}}{a \cos {\left (c \right )} + a} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x)

[Out]

Piecewise((-2*A*d*x*tan(c/2 + d*x/2)**4/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) - 4*A*
d*x*tan(c/2 + d*x/2)**2/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) - 2*A*d*x/(2*a*d*tan(c
/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) + 2*A*tan(c/2 + d*x/2)**5/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a
*d*tan(c/2 + d*x/2)**2 + 2*a*d) + 8*A*tan(c/2 + d*x/2)**3/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)*
*2 + 2*a*d) + 6*A*tan(c/2 + d*x/2)/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) + 3*B*d*x*t
an(c/2 + d*x/2)**4/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) + 6*B*d*x*tan(c/2 + d*x/2)*
*2/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) + 3*B*d*x/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*
d*tan(c/2 + d*x/2)**2 + 2*a*d) - 2*B*tan(c/2 + d*x/2)**5/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**
2 + 2*a*d) - 10*B*tan(c/2 + d*x/2)**3/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d) - 4*B*ta
n(c/2 + d*x/2)/(2*a*d*tan(c/2 + d*x/2)**4 + 4*a*d*tan(c/2 + d*x/2)**2 + 2*a*d), Ne(d, 0)), (x*(A + B*cos(c))*c
os(c)**2/(a*cos(c) + a), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (86) = 172\).

Time = 0.30 (sec) , antiderivative size = 225, normalized size of antiderivative = 2.50 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=-\frac {B {\left (\frac {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a + \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac {3 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + A {\left (\frac {2 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {2 \, \sin \left (d x + c\right )}{{\left (a + \frac {a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} - \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \]

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

-(B*((sin(d*x + c)/(cos(d*x + c) + 1) + 3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a + 2*a*sin(d*x + c)^2/(cos(d*
x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) - 3*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a + sin(d*x
 + c)/(a*(cos(d*x + c) + 1))) + A*(2*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a - 2*sin(d*x + c)/((a + a*sin(d*
x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))))/d

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.38 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=-\frac {\frac {{\left (d x + c\right )} {\left (2 \, A - 3 \, B\right )}}{a} - \frac {2 \, {\left (A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a} - \frac {2 \, {\left (2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

-1/2*((d*x + c)*(2*A - 3*B)/a - 2*(A*tan(1/2*d*x + 1/2*c) - B*tan(1/2*d*x + 1/2*c))/a - 2*(2*A*tan(1/2*d*x + 1
/2*c)^3 - 3*B*tan(1/2*d*x + 1/2*c)^3 + 2*A*tan(1/2*d*x + 1/2*c) - B*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*
c)^2 + 1)^2*a))/d

Mupad [B] (verification not implemented)

Time = 0.57 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.19 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{a+a \cos (c+d x)} \, dx=\frac {\left (2\,A-3\,B\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,A-B\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )}-\frac {x\,\left (2\,A-3\,B\right )}{2\,a}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A-B\right )}{a\,d} \]

[In]

int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x)),x)

[Out]

(tan(c/2 + (d*x)/2)^3*(2*A - 3*B) + tan(c/2 + (d*x)/2)*(2*A - B))/(d*(a + 2*a*tan(c/2 + (d*x)/2)^2 + a*tan(c/2
 + (d*x)/2)^4)) - (x*(2*A - 3*B))/(2*a) + (tan(c/2 + (d*x)/2)*(A - B))/(a*d)